Space Transportation Infrastructure Supported By Propellant Depots
نویسندگان
چکیده
A space transportation infrastructure is described that utilizes propellant depots to support all foreseeable missions in the Earth-Moon vicinity and deep space out to Mars. The infrastructure utilizes current expendable launch vehicles such as the Delta IV Heavy, Atlas V, and Falcon 9, for all crew, cargo, and propellant launches to orbit. Propellant launches are made to a Low-Earth-Orbit (LEO) Depot and an Earth-Moon Lagrange Point 1 (L1) Depot to support new reusable in-space transportation vehicles. The LEO Depot supports missions to Geosynchronous Earth Orbit (GEO) for satellite servicing, and to L1 for L1 Depot missions. The L1 Depot supports Lunar, Earth-Sun L2 (ESL2), Asteroid, and Mars missions. A Mars Orbital Depot is also described to support ongoing Mars missions. New concepts for vehicle designs are presented that can be launched on current 5-meter diameter expendable launch vehicles. These new reusable vehicle concepts include a LEO Depot, L1 Depot, and Mars Orbital Depot based on International Space Station (ISS) heritage hardware. The high-energy depots at L1 and Mars orbit are compatible with, but do not require, electric propulsion tug use for propellant and/or cargo delivery. New reusable in-space crew transportation vehicles include a Crew Transfer Vehicle (CTV) for crew transportation between the LEO Depot and the L1 Depot, a new reusable Lunar Lander for crew transportation between the L1 Depot and the lunar surface, and a Deep Space Habitat (DSH) to support crew missions from the L1 Depot to ESL2, Asteroid, and Mars destinations. A 6 meter diameter Mars lander concept is presented that can be launched without a fairing based on the Delta IV heavy Payload Planners Guide, which indicates feasibility of a 6.5 meter fairing. This lander would evolve to re-usable operations when propellant production is established on Mars. Figure 1 provides a summary of the possible missions this infrastructure can support. Summary mission profiles are presented for each primary mission capability. These profiles are the basis for propellant loads, numbers of vehicles/stages and launches for each mission capability. Data includes the number of launches required for each mission utilizing current expendable launch vehicle systems, and concluding remarks include ideas for reducing the number of launches through incorporation of heavy-lift launch vehicles, solar electric propulsion, and other transportation support concepts. 1 Technical Manager, Advanced Concepts Office, [email protected], Senior Member AIAA 2 Mission and Systems Analyst, Gray Research/ESTS, [email protected], AIAA Associate Fellow
منابع مشابه
Optimal Selection of Underground Parking Lines Arrangement: A Case Study of Tehran Subway Line 7
Due to the development of urban subway lines in order to extend public transportation and to accommodate the increased number of trains, depot and parking are necessary. This is to provide a space for parking trains in non-operating hours and to carry out maintenance and repair operations on trains. Subway depot is a predetermined space where trains, washing, car parks, and refueling work are p...
متن کاملAdvanced Hall Electric Propulsion for Future In - Space Transportation
The Hall thruster is an electric propulsion device used for multiple in-space applications including orbit raising, on-orbit maneuvers, and de-orbit functions. These in-space propulsion functions are currently performed by toxic hydrazine monopropellant or hydrazine derivative/nitrogen tetroxide bi-propellant thrusters. The Hall thruster operates nominally in the 1500 s specific impulse regime....
متن کاملEffect of Silica Content on Support-Iridium Active Phase Interactions on the Nanocatalyst Activity
To discuss the potential role of the support for iridium catalyst, we have proceeded to prepare a series of supported catalysts with the same active phase content, but different silica content, to elucidate the changes in surface structure and the reaction process of hydrous hydrazine decomposition on catalyst. The obtained iridium catalysts contained 20 wt% of nanoparticles dispersed on spheri...
متن کاملA Value Proposition for Lunar Architectures Utilizing Propellant Re-supply Capabilities
The NASA Exploration Systems Architecture Study (ESAS) produced a transportation architecture for returning humans to the moon affordably and safely while using commercial services for tasks such as cargo delivery to low earth orbit (LEO). Another potential utilization of commercial services is the delivery of cryogenic propellants to LEO for use in lunar exploration activities. With in-space p...
متن کاملA hierarchical approach for designing the downstream segment for a supply chain of petroleum production systems
Strategic decisions in a supply chain are the most important decisions for petroleum production systems. These decisions, due to high costs of transportation and storing, are costly and affected by the tactical and operational decisions in uncertain situations. In this article, we focus on designing a downstream segment for a supply chain of petroleum production systems. For this purpose, we wi...
متن کامل